If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+5t-300=0
a = 1; b = 5; c = -300;
Δ = b2-4ac
Δ = 52-4·1·(-300)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*1}=\frac{-40}{2} =-20 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*1}=\frac{30}{2} =15 $
| 6t-4t=-14 | | 1,5x+2(55-2x)=72,5 | | 8=+b/2=7 | | 3=-c-2c | | 15+u/3=15 | | -2x+8(x+5)=22 | | 3+s5=-1 | | -4=-5u+3(u-6) | | x+(x*0.1)=150 | | 15^2+7r=2 | | 4y+2(y+5)=-32 | | 6×+2y=-7 | | 3z+6+75=180 | | 5/6=2/3y | | 3+s/5=-1 | | 12=14+q/6 | | t=$6.00,$6.10,$6.64,$7.00 | | -12=-5p+7p | | 12x+58+70=180 | | 10m=5-35 | | 35=-10y-5 | | q-9=-18 | | -9=c-17 | | 2/3x+14=1/6x+19 | | w/5=-1 | | -10x+3=-7x+3 | | 2/3x14=1/6x+19 | | -16b-7=-18b-3 | | −10x+3=-7x-3 | | -12n+56=-4n | | 14x+22=68-9x | | 3x+6-8x=7x+2 |